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Pernicious effect of physical cutoffs in fractal analysis
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Fractal scaling appears ubiquitous, but the typical extension of the scaling range observed is just one to two
decades. A recent study has shown that an apparent fractal scaling spanning a similar range can emerge from
the randomness in dilute sets. We show that this occurs also in most kinds of nonfractal sets irrespective of
defining the fractal dimension by box counting, minimal covering, the Minkowski sausage, Walker’s ruler, or
the correlation dimension. We trace this to the presence of physical cutoffs, which induce smooth changes in
the scaling, and a bias over a couple of decades around some characteristic length. The latter affects also the
practical measure of fractality of truly fractal objects. A defensive strategy against artifacts and bias consists in
carefully identifying the cutoffs and a quick-and-dirty thumb rule requires to observe fractal scaling over at
least three decades.
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I. INTRODUCTION Il. PHYSICAL CUTOFFS AND THE DIMENSION
OF EMPIRICAL SETS

The original definition of “fractal” is strictly related to

the evaluation of the Hausdorff-Besicovitch dimension of a ITthe stcotp;]e of this t;:iapéairmlsnllrinl:]ec\i/v:‘? Lractsl iggfsly:'eislr;f
geometric set provided that this is not an integer. Since tni£S'ation 1o the geometric ension, ch cons

definition is of difficult applicability, several alternative op- tWQ main categorleg. The first one regards sm.all unconnected
erational definitions are preferred, such as box counting, it@PIECtS, such as points, rods, spots, etc. Their fractal dimen-
mathematical twin the Minkowski sausage, and Walker'sSion (between 0 and the dimension of the embedding Space
ruler. indicates clustering in their spatial distribution. Typical ex-
The concept of “fractals” was then extended to include @mples are earthquake epicentral maps, lake or mining re-
sets in which the numbeX of objects of diameter up tb ~ sources maps, spatial distribution of pores or impurities, and
scales as a power law with fractional exponBnfThis defi-  time series. The second category regards connected sets and
nition disregards the location of the elements in the set and itypical examples are topographic contours, piecewise linear
not simply amenable to a geometric dimension. One morgatterngsuch as geologic fault pattepnsontour surfaces, or
class of sets that has been included in the definition is theurface patterns in three-dimensior@D) images, etc. The
one in which the distribution of some more general propertyfractal dimensions of these categories are, respectively,
P (such as the earthquake magnitudeales as a power law greater than 1 and 2 and characterize the roughness and the
with the fractional exponent, which disposes of any link with branching complexity of the shapes.
the geometry. The scaling behavior can be different over different
Considering the distribution of higher-order moments, theranges of scales. For example, a series of equispaced points
generalized fractal dimensiddy, is defined withD, the clas-  on a line will scale with dimension zero at scales much
sical fractal dimensioricapacity, D; being the information smaller than the interpoint distande and with dimension 1
dimension and, the correlation dimension. If these dimen- (linelike) for scales much larger than this. If the points are
sions have different values, the set is called a “multifractal.” substituted with rods of lengtth, three different scaling laws
The evaluation of the correlation dimensiby is the scope appear, since the set has again dimension 1 for scales much
of the Grassberger and Procaccia algorithm, which is comsmaller thand. However, for the dimension zero to be well
monly used to study the time or space distribution of pointdefined in the intermediate region, the distance between the
events and the “strangeness” of the attractors of chaotiewo cutoffs must be sufficiently large. A set of balls of radius
orbits. R in a N-dimensional embedding space will always scale as
Although fractality ideally implies a power-law relation N dimensional for scales much smaller th@ninformation
over an infinite range of scales, it is measured only over about the spatial distribution of balls would only emerge at
very limited interval in most practical cases. Fractal analysisomewhat larger scales. Similarly, in a set of small fractals of
must face not only the two obvious cutoffs related to theextensionR distributed in space following a different fractal
limited resolution and extension of the images or data setgjistribution than their internal one, the fractal dimension of
but also other physical cutoffs linked to the measurementhe objects will prevail for scales much smaller tiarwhile
procedure or to the presence of characteristic lengths. Alihe fractal dimension of their spatial distribution will prevalil
these cutoffs will be shown to have a critical importance infor much larger ones. In general, stopping the generating
defining the fractal nature of the system. process of a fractal set at some finite step in which the small-
est details are segments of lengthdimension 1 would pre-
vail. Contour lines and line networks always scale as one
*Email address: matteo@ibogeo.df.unibo.it dimensional below the length of the smallest traced segment.

1063-651X/2002/663)/0372014)/$20.00 65 037201-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW E 65 037201

z
3'_ 2_ ................................ ........................ -
B I S N ]
-10 -8 -6 -4 -2 0
Iogwr
FIG. 1. Box countingN(r) curves for random sets ofl =100 FIG. 2. Local box counting dimensidd(r) for the same sets as

rods for several values of the radidsAll lengths are normalized to  in Fig. 1.
the unit side of the analyzed sets.

distance between the cutoffs is larger than 3 decades. Other-
At the same time, extending the analysis below the width ofvise, an apparent fractal dimension extending over a range
the traced lines, dimension 2 will prevail, while measuringup to 2 decades appears, with an appadevélue changing
the scaling much beyond the extension of the object will giveprogressively from zero to 1 as the density increases.

dimension zero since this will appear isolated. We analyzed several sets of points with normally distrib-
uted distances of fixed mean valtteand different values of
IIl. FRACTAL ANALYSIS the standard deviatiomr, ranging from zero(equispaced
pointy to A (see Figs. 3 and)4 The width of the corner

A. Several capacity dimensions region clearly increases with the dispersion of the interpoint

Since the originalcapacity or minimal coveringfractal ~ distances, converging to the shape of the Poisson random
dimension is cumbersome and time consuming in more thafistribution wheno=A. We conclude that a width of 2 de-
one dimension1], alternative definitions, more computa- cades around the average distance cutoff is typical for ob-
tionally efficient, were proposed. One of the most popular of€cts distributed with a strong random component.
these definitions is theox counting(BC). The covering is The shape of the transition around the lower cutoff is due
obtained by Considering a uniform partitidgenera”y dy_ to the redundancy of the box COUn“ng covering. As one can
adic made of nonoverlapping boxes of radigsand then
counting the number of boxed(r) that have a nonempty 28
intersection with the set. Automatization of BC requires the
digitization of the sets, and the fractal dimensibg is 261
generally estimated through a least squares linear fit. Severe
traps are hidden in this apparently simple process, often lead 24
ing to wrong dimension estimat¢2,3].

A very similar method, calledlinkowski sausagéMs), 22
consists of taking a ball of radiusaround each point of the
set and evaluating the volum&r) of the union of all balls.
A fractal dimensiorD g prevails at some range if the quan-
tity N(r)=V(r)/Vg(r) obeys a power law in that rang¥/{ 18b
is the volume of each ball

Hamburgeret al. [4] derived an analytical calculation of .l
the expected scaling curvé¥r) for a set of randomly dis- _
tributed balls analyzed by BC and MS methods. Typical BC . ;

N

=)
g,
— 20

curves ofN(r) and local fractal dimension for 1D balls are -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5

|
reported in Figs. 1 and 2 for several values of the diameter %o

of the balls. Examining these in terms of cutoffs, one sees F|G. 3. Box counting(r) function for a set of 500 points with
that two of these are apparent, respectively, related to thgaussian interpoint distribution. Circled points correspond to a pro-
diameterd and to the average free distanke Dimension 1  gressively increasing standard deviatioiA=0.2,0.4,0.6,0.8,1.
prevails at scales external to these cutoffs, while dimensioffhe two thick curves correspond to equispaced and random placed
zero may only be established in the intermediate region if th@oints (Poissoi.
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FIG. 4. Local box counting dimensidd(r) for the same sets as
in Fig. 3.

observe in Fig. 5 the cutoff has substantially the same sha

for a random set of 100 boxes of diameter 10~* and for

the same boxes distributed in an equispaced set. Analysis o
the random set with the Bouligand minimal covering algo-

rithm leads to a sharp cutoféee Fig. 5. The redundancy of

the BC covering depends on the random match between t
uniform partition and the set points, but it is easy to sho
this to be statistically identical to that of the MS covering,

which is simple to evaluate. The MS covered length Npr

separated rods of diametdiis
L(r)=N,(d+r). (3.1

Dividing this expression by the diameternf the MS balls,

one obtains the equivalent number of boxes to be compare

he
W
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FIG. 6. Random walk drifted on a 2048128 pixel stripe with
velocities(a) v=2 pix/step,(b) v=6 pix/step,(c) v=10 pix/step,
(d) v =20 pix/step.

B. Walker’s ruler dimension

Apparent fractality can also be shown to emerge as an
artifact of cutoffs with the Walker’s ruleiWR) dimension by
analyzing a drifted random walk of given stdpThe particle
is forced to move in a narrow strip of widtlv and drifted
along the strip with a constant velocity. Images of the
resulting trace for several valueswfire shown in Fig. 6 and
their WR analysis is shown in Fig. 7. The set behaves as a

Rife for rulers either shorter than the stepr longer than the

idth w of the strip. The slope in the intermediate region
kes the typical random walk value of 2 for slow drift ve-
locity, but it takes apparent fractal values progressively de-
creasing from 2 to 1 as the drift velocity is increased with
consequent disentanglement. This nonuniversal apparent
ractal scaling spans again approximately one or two de-
cades. BC analysis of the same pictures yields very similar
results and provides an apparent counterproof to the artifact.

C. The correlation dimension

The correlation dimension D is estimated[5] as the
%|ope of the log-log plot of2(r),

with the BC curves in Fig. 5. It is immediate to see that the 1
concavity of the cutoff has, again, a typical width of a couple C(r)= lim W{number of pairs(i,j) with |X;—X;|<r}

of decades, which is simply due to the presence of an addi-
tive constant to the power law due to the change of scaling.
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FIG. 5. Box counting(BC) and minimal coveringMC) N(r)
functions for 100 randon{RSB) or equispacedEQB) rods of

length 6=10"%. The solid line represents the theoretical prediction

of average redundancy.
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FIG. 7. Walker’s ruler analysis of the curves of Fig. 6, along
with the least squares fit of the linear regions.
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Again, the presence of physical cutoffs in the data gives riseonnected images and is irrespective of the definition of frac-
to smooth changes of scaling with the eventual emergence ¢&l dimension. As a consequence, serious doubts emerge on
apparent fractality. Kitoret al. [6] showed that the cutoffs all empirical fractal claims—the vast majority in practice
induce a concavity in their neighborhood due to the appeat-10}—which do not span more than two decades.
ance of the additive constants to the power laws. This effect The presence and the nature of the physical cutoffs is not
is identical to the one described in the BC section. generally knowna priori for a given empirical image, but
Several alternative estimators for the correlation dimen€Xperience may provide great help. In an image constituted
sions were derived by Takefig] and by Smith[8], mainly of spots, one should estimate the average d|amet_er of the
based on maximum likelihood. These statistical estimator§POtS and the average distance among them. For line-based
are gathered by estimators of their variance, but they ma{mages, such as river patterns and fracture network, the mini-
prove to be inconsistent if physical cutoffs affect the scaling.mal length free of intersections or sharp corners represents a
Pisarenkeet al. [9] proposed a method to estimate the preSJower cutoff, and one should observg whether there is some
ence of an upper cutoff in the power law, but the problemsca|e at which the set appears to uniformly cover the embed-

the cutoffs, one can guess what the scaling curve will look

I\V. A STRATEGY OF DEEENSE AGAINST THE Iike, and, if the difference betv\{egn these cutoffs i§ insuffi-
PERNICIOUS EEFECT OF PHYSICAL CUTOFFES cient, one can conc_:lude'that it is useless'to estimate the

fractal dimension since it would be both inaccurate and

Since a modest difference between the values of cutoffs imeaningless.

typical, the emergence of an apparent fractal scaling extend- While this may require great care in future issues, as well
ing over up to a couple of decades is expected to be a vergs reassessment of published ones, a quick-and-dirty thumb
common feature, which is independent of an effective fractatule caution against the effect of physical cutoffs is to ensure
nature of the sets. This is valid for both connected and unthat each fractal estimate spans over at least three decades.
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