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Pernicious effect of physical cutoffs in fractal analysis
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~Received 28 March 2001; revised manuscript received 6 September 2001; published 12 February 2002!

Fractal scaling appears ubiquitous, but the typical extension of the scaling range observed is just one to two
decades. A recent study has shown that an apparent fractal scaling spanning a similar range can emerge from
the randomness in dilute sets. We show that this occurs also in most kinds of nonfractal sets irrespective of
defining the fractal dimension by box counting, minimal covering, the Minkowski sausage, Walker’s ruler, or
the correlation dimension. We trace this to the presence of physical cutoffs, which induce smooth changes in
the scaling, and a bias over a couple of decades around some characteristic length. The latter affects also the
practical measure of fractality of truly fractal objects. A defensive strategy against artifacts and bias consists in
carefully identifying the cutoffs and a quick-and-dirty thumb rule requires to observe fractal scaling over at
least three decades.
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I. INTRODUCTION

The original definition of ‘‘fractal’’ is strictly related to
the evaluation of the Hausdorff-Besicovitch dimension o
geometric set provided that this is not an integer. Since
definition is of difficult applicability, several alternative op
erational definitions are preferred, such as box counting
mathematical twin the Minkowski sausage, and Walke
ruler.

The concept of ‘‘fractals’’ was then extended to inclu
sets in which the numberN of objects of diameter up toL
scales as a power law with fractional exponentD. This defi-
nition disregards the location of the elements in the set an
not simply amenable to a geometric dimension. One m
class of sets that has been included in the definition is
one in which the distribution of some more general prope
P ~such as the earthquake magnitude! scales as a power law
with the fractional exponent, which disposes of any link w
the geometry.

Considering the distribution of higher-order moments,
generalized fractal dimensionDq is defined withD0 the clas-
sical fractal dimension~capacity!, D1 being the information
dimension andD2 the correlation dimension. If these dime
sions have different values, the set is called a ‘‘multifracta
The evaluation of the correlation dimensionD2 is the scope
of the Grassberger and Procaccia algorithm, which is co
monly used to study the time or space distribution of po
events and the ‘‘strangeness’’ of the attractors of cha
orbits.

Although fractality ideally implies a power-law relatio
over an infinite range of scales, it is measured only ove
very limited interval in most practical cases. Fractal analy
must face not only the two obvious cutoffs related to t
limited resolution and extension of the images or data s
but also other physical cutoffs linked to the measurem
procedure or to the presence of characteristic lengths.
these cutoffs will be shown to have a critical importance
defining the fractal nature of the system.
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II. PHYSICAL CUTOFFS AND THE DIMENSION
OF EMPIRICAL SETS

The scope of this paper is limited to fractal analysis
relation to the geometric dimension, which considers sets
two main categories. The first one regards small unconne
objects, such as points, rods, spots, etc. Their fractal dim
sion ~between 0 and the dimension of the embedding spa!
indicates clustering in their spatial distribution. Typical e
amples are earthquake epicentral maps, lake or mining
sources maps, spatial distribution of pores or impurities,
time series. The second category regards connected set
typical examples are topographic contours, piecewise lin
patterns~such as geologic fault patterns!, contour surfaces, o
surface patterns in three-dimensional~3D! images, etc. The
fractal dimensions of these categories are, respectiv
greater than 1 and 2 and characterize the roughness an
branching complexity of the shapes.

The scaling behavior can be different over differe
ranges of scales. For example, a series of equispaced p
on a line will scale with dimension zero at scales mu
smaller than the interpoint distanceD, and with dimension 1
~linelike! for scales much larger than this. If the points a
substituted with rods of lengthd, three different scaling laws
appear, since the set has again dimension 1 for scales m
smaller thand. However, for the dimension zero to be we
defined in the intermediate region, the distance between
two cutoffs must be sufficiently large. A set of balls of radi
R in a N-dimensional embedding space will always scale
N dimensional for scales much smaller thanR; information
about the spatial distribution of balls would only emerge
somewhat larger scales. Similarly, in a set of small fractals
extensionR distributed in space following a different fracta
distribution than their internal one, the fractal dimension
the objects will prevail for scales much smaller thanR, while
the fractal dimension of their spatial distribution will preva
for much larger ones. In general, stopping the genera
process of a fractal set at some finite step in which the sm
est details are segments of lengthd, dimension 1 would pre-
vail. Contour lines and line networks always scale as o
dimensional below the length of the smallest traced segm
©2002 The American Physical Society01-1
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At the same time, extending the analysis below the width
the traced lines, dimension 2 will prevail, while measuri
the scaling much beyond the extension of the object will g
dimension zero since this will appear isolated.

III. FRACTAL ANALYSIS

A. Several capacity dimensions

Since the originalcapacity or minimal coveringfractal
dimension is cumbersome and time consuming in more t
one dimension@1#, alternative definitions, more computa
tionally efficient, were proposed. One of the most popular
these definitions is thebox counting~BC!. The covering is
obtained by considering a uniform partition~generally dy-
adic! made of nonoverlapping boxes of radiusr, and then
counting the number of boxesN(r ) that have a nonempty
intersection with the set. Automatization of BC requires t
digitization of the sets, and the fractal dimensionDBC is
generally estimated through a least squares linear fit. Sev
traps are hidden in this apparently simple process, often le
ing to wrong dimension estimates@2,3#.

A very similar method, calledMinkowski sausage~MS!,
consists of taking a ball of radiusr around each point of the
set and evaluating the volumeV(r ) of the union of all balls.
A fractal dimensionDMS prevails at some range if the qua
tity N(r )5V(r )/VB(r ) obeys a power law in that range (VB
is the volume of each ball!.

Hamburgeret al. @4# derived an analytical calculation o
the expected scaling curvesN(r ) for a set of randomly dis-
tributed balls analyzed by BC and MS methods. Typical B
curves ofN(r ) and local fractal dimension for 1D balls ar
reported in Figs. 1 and 2 for several values of the diametd
of the balls. Examining these in terms of cutoffs, one s
that two of these are apparent, respectively, related to
diameterd and to the average free distanceD. Dimension 1
prevails at scales external to these cutoffs, while dimens
zero may only be established in the intermediate region if

FIG. 1. Box countingN(r ) curves for random sets ofM5100
rods for several values of the radiusd. All lengths are normalized to
the unit side of the analyzed sets.
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distance between the cutoffs is larger than 3 decades. O
wise, an apparent fractal dimension extending over a ra
up to 2 decades appears, with an apparentd value changing
progressively from zero to 1 as the density increases.

We analyzed several sets of points with normally distr
uted distances of fixed mean valueD and different values of
the standard deviations, ranging from zero~equispaced
points! to D ~see Figs. 3 and 4!. The width of the corner
region clearly increases with the dispersion of the interpo
distances, converging to the shape of the Poisson ran
distribution whens5D. We conclude that a width of 2 de
cades around the average distance cutoff is typical for
jects distributed with a strong random component.

The shape of the transition around the lower cutoff is d
to the redundancy of the box counting covering. As one c

FIG. 2. Local box counting dimensionD(r ) for the same sets as
in Fig. 1.

FIG. 3. Box countingN(r ) function for a set of 500 points with
Gaussian interpoint distribution. Circled points correspond to a p
gressively increasing standard deviations/D50.2,0.4,0.6,0.8,1.
The two thick curves correspond to equispaced and random pl
points ~Poisson!.
1-2
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observe in Fig. 5 the cutoff has substantially the same sh
for a random set of 100 boxes of diameterd51024 and for
the same boxes distributed in an equispaced set. Analys
the random set with the Bouligand minimal covering alg
rithm leads to a sharp cutoff~see Fig. 5!. The redundancy of
the BC covering depends on the random match between
uniform partition and the set points, but it is easy to sh
this to be statistically identical to that of the MS coverin
which is simple to evaluate. The MS covered length forNr
separated rods of diameterd is

L~r !5Nr~d1r !. ~3.1!

Dividing this expression by the diameterr of the MS balls,
one obtains the equivalent number of boxes to be comp
with the BC curves in Fig. 5. It is immediate to see that t
concavity of the cutoff has, again, a typical width of a coup
of decades, which is simply due to the presence of an a
tive constant to the power law due to the change of scal

FIG. 4. Local box counting dimensionD(r ) for the same sets a
in Fig. 3.

FIG. 5. Box counting~BC! and minimal covering~MC! N(r )
functions for 100 random~RSB! or equispaced~EQB! rods of
lengthd51024. The solid line represents the theoretical predicti
of average redundancy.
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B. Walker’s ruler dimension

Apparent fractality can also be shown to emerge as
artifact of cutoffs with the Walker’s ruler~WR! dimension by
analyzing a drifted random walk of given stepd. The particle
is forced to move in a narrow strip of widthw and drifted
along the strip with a constant velocityv. Images of the
resulting trace for several values ofv are shown in Fig. 6 and
their WR analysis is shown in Fig. 7. The set behaves a
line for rulers either shorter than the stepd or longer than the
width w of the strip. The slope in the intermediate regio
takes the typical random walk value of 2 for slow drift v
locity, but it takes apparent fractal values progressively
creasing from 2 to 1 as the drift velocity is increased w
consequent disentanglement. This nonuniversal appa
fractal scaling spans again approximately one or two
cades. BC analysis of the same pictures yields very sim
results and provides an apparent counterproof to the artif

C. The correlation dimension

The correlation dimension D2 is estimated@5# as the
slope of the log-log plot ofC(r ),

C~r !5 lim
N→`

1

N2 $number of pairs~ i , j ! with uXi2Xj u,r %

;r D2. ~3.2!

FIG. 6. Random walk drifted on a 20483128 pixel stripe with
velocities~a! v52 pix/step,~b! v56 pix/step,~c! v510 pix/step,
~d! v520 pix/step.

FIG. 7. Walker’s ruler analysis of the curves of Fig. 6, alo
with the least squares fit of the linear regions.
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Again, the presence of physical cutoffs in the data gives
to smooth changes of scaling with the eventual emergenc
apparent fractality. Kitohet al. @6# showed that the cutoffs
induce a concavity in their neighborhood due to the appe
ance of the additive constants to the power laws. This ef
is identical to the one described in the BC section.

Several alternative estimators for the correlation dim
sions were derived by Takens@7# and by Smith@8#, mainly
based on maximum likelihood. These statistical estima
are gathered by estimators of their variance, but they m
prove to be inconsistent if physical cutoffs affect the scali
Pisarenkoet al. @9# proposed a method to estimate the pr
ence of an upper cutoff in the power law, but the proble
becomes very tricky if two cutoffs are present.

IV. A STRATEGY OF DEFENSE AGAINST THE
PERNICIOUS EFFECT OF PHYSICAL CUTOFFS

Since a modest difference between the values of cutof
typical, the emergence of an apparent fractal scaling exte
ing over up to a couple of decades is expected to be a
common feature, which is independent of an effective frac
nature of the sets. This is valid for both connected and
Int
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connected images and is irrespective of the definition of fr
tal dimension. As a consequence, serious doubts emerg
all empirical fractal claims—the vast majority in practic
@10#—which do not span more than two decades.

The presence and the nature of the physical cutoffs is
generally knowna priori for a given empirical image, bu
experience may provide great help. In an image constitu
of spots, one should estimate the average diameter of
spots and the average distance among them. For line-b
images, such as river patterns and fracture network, the m
mal length free of intersections or sharp corners represen
lower cutoff, and one should observe whether there is so
scale at which the set appears to uniformly cover the emb
ding space. If one identifies the nature and the value
the cutoffs, one can guess what the scaling curve will lo
like, and, if the difference between these cutoffs is insu
cient, one can conclude that it is useless to estimate
fractal dimension since it would be both inaccurate a
meaningless.

While this may require great care in future issues, as w
as reassessment of published ones, a quick-and-dirty th
rule caution against the effect of physical cutoffs is to ens
that each fractal estimate spans over at least three deca
,
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